Cálculo Diferencial E Integral Dos Métodos De Integración. Prof

   EMBED

Share

Preview only show first 6 pages with water mark for full document please download

Transcript

Cálculo Diferencial e Integral - Dos métodos de integración. Prof. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI.8 Integración : Integrales por sustitución trigonométrica. Integración : Integrales por descomposición en fracciones simples. Ejercicios resueltos Ejemplo 1 : Integre Z p dx x2 5 Solución : Hacem os el cambio trigonom étrico x= p 5 sec t; dx = p 5 sec t tan t dt la integral se transform a en Z p dx x2 5 = Z p r Z Z p Z p Z p 5 sec t tan t dt 5 sec t tan t dt 5 sec t tan t dt sec t dt = ln jsec t + tan tj + C; = = = p p p 2 2 5 sec t 5 5 tan t 5 (sec t 1) 5 sec t tan t dt = p 2 5 sec t 5 com o x= p 5 sec t x sec t = p 5 =) =) cos t = Para calcular tan t en función x nos p odem os ayudar con el triángulo rectangular, con a = x = a sec t =) Por Pitágoras p x2 tan t = Z p dx x2 x = ln p + 5 5 p x2 p 5 a2 así, Luego 5 c:a: = x hip x a sec t = c:o: = p p 5 5 c:o: = c:a: + C1 = ln p x+ donde, C = C1 ln x2 p 5 5 : p x2 p 5 p 5 + C1 = ln x + p x2 5 + C; 5: F Ejemplo 2 : Integre Z p x2 dx 4 Solución : Hacem os el cambio trigonom étrico x = 2 sen t; dx = 2 cos t dt la integral se transform a en Z p 4 x2 dx = Z q 4 (2 sen t)2 2 cos t dt = 2 =2 donde, así, com o Z 2 cos t dt = Z p x = 2 sen t 4 Z Z p 4 (1 Z p 4 4 sen2 t cos t dt sen2 t) cos t dt = 4 Z p cos2 t cos t dt = 4 Z cos2 t dt; 1 + cos 2t t 1 t 1 dt = + sen 2t + C1 = + sen t cos t + C1 ; 2 2 4 2 2 x2 dx = 4 =) t 1 + sen t cos t + C1 2 2 sen t = x c:o: = 2 hip 1 = 2t + 2 sen t cos t + C; =) t = arcsen x 2 Para calcular cos t en función x nos p odem os ayudar con el triángulo rectangular, con a = 2 x = a sen t =) Por Pitágoras sen t = p c:a: = a2 x a x2 así, cos t = es decir, Z p Luego Z p Z Ejemplo 3 : Integre x 2 x2 dx = 2 arcsen 4 +2 x 2 c:o: = hip p p 2 x 2 x2 dx = 2 arcsen 4 2 x2 4 x2 4 ; + C = 2 arcsen x 2 + p x 4 x2 + C: 2 p x 4 x2 + C: 2 + F dx p x x2 + 3 Solución : Hacem os el cambio trigonom étrico x= p 3 tan t; dx = p 2 3 sec t dt la integral se transform a en Z dx = p x x2 + 3 Z p 3 sec2 t dt r p p 3 tan t 3 tan t = 2 +3 Z sec2 t dt = p tan t 3 tan2 t + 3 Z sec2 t dt = p tan t 3 sec2 t Z sec2 t dt 1 = p p tan t 3 sec t 3 Z sec t dt; tan t donde, Z sec t dt = tan t 1 Z Z 1 cos t dt = dt = csc t dt = ln jcsc t sen t sen t cos t Z así, Z com o p 1 dx = p ln jcsc t p x x2 + 3 3 cot tj + C; cot tj + C; x c:o: tan t = p = c:a: 3 p Para calcular csc t en función x nos p odem os ayudar con el triángulo rectangular, con a = 3 x= x = a tan t =) Por Pitágoras 3 tan t tan t = p hip = hip = c:o: Luego Z x a x2 + a2 así, csc t = =) p 3 + x2 x y dx 1 = p ln p x x2 + 3 3 p cot t = 3 + x2 x p 3 1 : = x tan t p 3 + C: x F Ejemplo 4 : Integre Z 2x2 (x 6x + 7 2 1) (x + 2) dx Solución : Observem os que el grado del p olinom io del num erador, 2, es m enor que el grado del p olinom io del denom inador, 3, p or lo tanto, no se dividen los p olinom ios. Adem ás, el denom inador ya está factorizado. 2 Escribim os las fracciones sim ples corresp ondientes 2x2 6x + 7 A = 1)2 (x + 2) (x x 1 + B 1)2 (x C : x+2 + Buscam os los valores de las constantes A, B y C, 2x2 (x 6x + 7 A = 2 1) (x + 2) x B + 1 + 2 (x 1) C A (x = x+2 1) (x + 2) + B (x + 2) + C (x 1)2 2 (x 1) (x + 2) ; de aquí, 2 2x 6x + 7 = A (x 2 1) (x + 2) + B (x + 2) + C (x 1) : Para obtener los valores de las constantes le dam os valores arbitrarios a x Si x = 1, entonces 2 (1) Si x = 2 6 (1) + 7 = A ((1) 1) ((1) + 2) + B ((1) + 2) + C ((1) 1) 2 =) 3 = 3B B=1 =) 2, entonces 2 ( 2) 2 6 ( 2) + 7 = A (( 2) 1) (( 2) + 2) + B (( 2) + 2) + C (( 2) 1) 2 =) 27 = 9C =) C=3 Si x = 0, entonces 2 (0) 2 6 (0) + 7 = A ((0) com o B = 1 y C = 3, se tiene que 7 = 1) ((0) + 2) + B ((0) + 2) + C ((0) Entonces 2x2 6x + 7 1)2 (x + 2) (x p or lo tanto, Z A= 2A + 2 (1) + (3), de aquí, 2x2 6x + 7 2 (x 1) (x + 2) dx = Z A = x 1 1 x + dx + 1 1) =) 7= 2A + 2B + C; 1: B 1)2 (x Z 2 + 1 (x 1) 2 C ; x+2 dx + Z 3 dx: x+2 La prim era integral del lado derecho de la igualdad se resuelve haciendo el cambio de variable u=x así, Z 1 x 1 1; Z dx = du = dx; du = u ln juj + C1 = ln jx 1j + C1 : La segunda integral del lado derecho de la igualdad se resuelve haciendo el m ism o cambio de variable u=x y la integral se transform a en Z 1 (x 1) 2 1; dx = Z du = dx; du = u2 1 + C2 = u 1 x 1 + C2 : La tercera y últim a integral del lado derecho de la igualdad la resolvem os haciendo el cambio de variable u = x + 2; se obtiene Z Finalm ente Z 3 dx = 3 x+2 2x2 (x 6x + 7 1)2 (x + 2) Z du = dx; du = 3 ln juj + C3 = 3 ln jx + 2j + C3 : u dx = ln jx 1j 1 x 1 + 3 ln jx + 2j + C: F Ejemplo 5 : Integre Z x2 + 8x + 14 dx (2x + 4) (x2 + 2x + 2) Solución : Observem os que el grado del p olinom io del num erador, 2, es m enor que el grado del p olinom io del denom inador, 3, p or lo tanto, no se dividen los p olinom ios. Adem ás, el denom inador ya está factorizado, puesto que, el p olinom io p (x) = x2 + 2x + 2 no es factorizable en los núm eros reales. 3 Escribim os las fracciones sim ples corresp ondientes x2 + 8x + 14 A Bx + C = + 2 : (2x + 4) (x2 + 2x + 2) 2x + 4 x + 2x + 2 Buscam os los valores de las constantes A, B y C, A x2 + 2x + 2 + (Bx + C) (2x + 4) x2 + 8x + 14 A Bx + C = + 2 = ; (2x + 4) (x2 + 2x + 2) 2x + 4 x + 2x + 2 (2x + 4) (x2 + 2x + 2) de aquí, 2 2 x + 8x + 14 = A x + 2x + 2 + (Bx + C) (2x + 4) : Para obtener los valores de las constantes le dam os valores arbitrarios a x Si x = 2, entonces 2 2 ( 2) + 8 ( 2) + 14 = A ( 2) + 2 ( 2) + 2 + (B ( 2) + C) (2 ( 2) + 4) =) 2 = 2A A=1 =) Si x = 0, entonces 2 2 (0) + 8 (0) + 14 = A (0) + 2 (0) + 2 + (B (0) + C) (2 (0) + 4) =) 14 = 2A + 4C; C=3 com o A = 1, se tiene que 14 = 2 (1) + 4C, de aquí, Si x = 1, entonces 2 2 (1) + 8 (1) + 14 = A (1) + 2 (1) + 2 + (B (1) + C) (2 (1) + 4) p or lo tanto, 23 = 5A + 6B + 6C; B = 0: com o A = 1 y C = 3, se tiene que 23 = 5 (1) + 6B + 6 (3), de aquí, Entonces =) x2 + 8x + 14 1 3 = + 2 ; (2x + 4) (x2 + 2x + 2) 2x + 4 x + 2x + 2 Z x2 + 8x + 14 dx = (2x + 4) (x2 + 2x + 2) Z 1 dx + 2x + 4 Z 3 1 dx = x2 + 2x + 2 2 Z dx +3 x+2 Z dx : x2 + 2x + 2 La prim era integral del lado derecho de la igualdad se resuelve haciendo el cambio de variable u = x + 2; así, Z dx = x+2 Z du = dx; du = ln juj + C1 = ln jx + 2j + C1 : u Para la segunda integral del lado derecho de la igualdad com pletam os cuadrado 2 2 x + 2x + 2 = (x + 1) + 1 Z =) dx = x2 + 2x + 2 Z dx (x + 1)2 + 1 ; hacem os el cambio de variable u = x + 1; y la integral se transform a en Luego Z Z dx = x2 + 2x + 2 Z du = dx; du = arctan u + C2 = arctan (x + 1) + C2 : u2 + 1 x2 + 8x + 14 1 dx = ln jx + 2j + 3 arctan (x + 1) + C: (2x + 4) (x2 + 2x + 2) 2 F Ejercicios 1. Calcular las siguientes integrales haciendo la sustitución trigonométrica apropiada. Z Z Z Z dx dt dx d p p p 2: 3: 1: 4: 7 + 2t2 16 x2 4 3x2 9+ 4 2 5: Z p dx 3x2 2 6: 11: 15: 19: 23: 27: 31: 35: 39: 43: 48: 52: 56: 60: 64: 68: 72: 76: 80: 84: 88: Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z dx ax2 Z y dy Z y 2 dy Z dx Z p 1 + t2 dt a (y 2 + 4) (y 2 + 4) Z Z Z p cos x dx dx dx 12: 13: 14: 2t t2 dt 2 2 3=2 sen x 6 sen x + 12 (1 + x2 ) (4x2 25) Z Z Z p p x2 dx p p et 9 e2t dt 16: 5 4t t2 dt 17: dx 18: 2 2 5 x x + 4x + 5 Z Z p 2 Z 3x 9x 4 dx dx p p p 20: dx 21: dx 22: 4 2 2 x x x 2 x + 2x + 5 4x x2 Z Z Z x dx t dt ex dx dx p p p p 26: 25: 24: 4x x2 a4 t4 16 + 6x x2 1 + ex + e2x Z Z Z p 2x + 1 2x 1 sen t cos t 2t dx 28: dx 29: e 9 dt 30: dt x2 + 2x + 2 x2 6x + 18 9 + cos4 t Z Z Z sec2 2x ln x dx 3x2 x3 p p dx 32: 33: dx 34: dx 2 2 2x + 5 9 + tan 2x 7 + x2 x 1 4 ln x ln2 x p p Z Z Z x tan7 x + tan5 x dx e3x dx p 36: dx 37: 38: 2 dx 4 4 5=2 2 2 tan ( =4) + tan x x x 5 (x + 6) (e x + ex ) Z Z Z e 3x dx x2 dx dx dx p p p 40: 41: 42: 3=2 3 6 2 8x x 13 9 x 3 x2 (e2x 9) Z Z Z Z dx dx dx dx dx p p p 46: 47: 44: 45: 16 + x2 2 + x2 x2 4 x2 5 x x2 + 3 Z Z p Z dx dx 1 x2 dx p p p 49: 50: dx 51: 2 2 2 2 x 9x + 6x 8 x 1 x x + 2x + 5 p Z Z Z x2 dx x2 a2 dx p p dx 53: 54: dx 55: 4 3=2 2 3 x2 2 2 x x x + 9 x 16 (a x ) Z Z Z p p p dx 57: 1 4r2 dr 58: t 4 t2 dt 59: x2 4 9x2 dx 5=2 2 (5 4x x ) Z Z Z p 2x 1 t3 dt x dx p p p dx 61: 62: 63: x2 9 x2 dx x2 4x + 5 t2 + 4 1 x2 Z Z Z e2x dx dx dx dx p p p p 65: 66: 67: 2x 4x 2 2 2 2 2 1+e +e x 16x 9 x x +9 x + 4x + 8 Z Z Z 2 4x dx sen x dx x dx p p p 69: 71: dx 70: 2 2 2 2 7 + 5x cos x + 4 cos x + 1 x + 6x x + 6x p Z Z Z dx dx sen 2x sen x x p dx 74: 75: dx 73: 2 2 3=2 2 2 sen x + 5 x 8x + 19 (x 4) x (1 x ) Z Z Z x 1 x dx e2x dx 5=2 p p 77: dx 78: 79: x2 1 dx x x 3=2 + 4 2 6e 6e x x x 8x + 3 Z Z Z dx dx dx x dx p p 83: 81: 82: 3x2 x + 1 x4 4x2 + 3 x+x+2 x x2 Z Z Z p dx dx dx x3 4 9x2 dx 85: 86: 87: 2 x2 + 2x x2 + 2x + 5 (x2 + 2x + 2) Z Z Z p sec2 x dx x2 dx dx p p 91: 89: t t2 dt 90: x2 6x + 10 2 + 3x 2x2 tan2 x 2 p b 7: 5=2 8: 5=2 5 9: p bx2 10: 5t 92: 96: 100: 104: 108: 112: 116: 119: Z Z p x2 + 2x + 5 dx dt p 93: Z Z p t2 + 1 dt 94: x2 dx p 9 x2 Z Z p t2 4 dt t2 Z Z dx p x2 + px + q 2y + 1 p dy (t + 1) + 2t y2 + 9 Z Z Z p ax dx dx p 1 2t t2 dt 101: 102: 103: 3=2 2 1 + a2x 1 6x x2 (y + 4) Z Z Z Z 3x 6 x2 dx y dy (2x + 1) dx p p p dx 105: 106: 107: 2 2 4 x2 + 2x + 2 x 4x + 5 4x x 16 9y Z Z Z Z 2x 1 t2 dt 3x dx 2x 3 p p dx 109: 110: dx 111: 2 2 2 2 x2 6x + 18 4 x x + 2x + 5 (t + 1) Z Z Z Z 2x 1 dz y 2 dy (2x 8) dx p p p 115: dx 113: 114: 5=2 2 1 x x2 x2 4x + 5 z 1 z2 (9 y ) Z Z Z p dt sen 2x + cos x p 2 x x2 dx 117: dx 118: 2 x + sen x 2 sen 2 t 2t + 26 Z Z Z dt dt 2t dt p p p 120: 121: 2 2 2 16 + 6t t 16 + 4t 2t t 2t + 26 t2 97: 98: sen x dx 16 + cos2 x Z y 3 dy 95: 99: 2. Calcular las siguientes integrales utilizando descomposición en fracciones simples. Z 2 Z Z Z Z x +1 dx 2 dx 3t2 6t + 2 5t + 3 1: dx 2: 3: 4: dt 5: dt x2 x x2 x 2 x2 + 2x 2t3 3t2 + t t2 9 Z Z Z 4 Z Z 3x3 dx 2 dx x + 8x2 + 8 x2 dx dx 6: 7: 8: dx 9: 10: 3 2 x2 + x 2 x2 1 x3 4x (x + 1) x2 (x 1) Z Z Z Z 5x2 + 6x + 9 dx dt x3 4x x3 + x 11: dx 12: 13: 14: 2 2 2 2 2 dx (x 3) (x 3) (x + 1) t2 (t + 1) (x2 1) Z Z Z Z x3 + 1 dx dx x2 + 19x + 10 dx 18: 15: 16: 17: 2 2 2 dx 4 2 4 2 9x + x x + x2 + 1 (x 4x + 5) (x 3) (2x + 1) Z Z Z Z x4 + 1 dx x2 2x 1 x3 dx x2 dx 19: 20: dx 21: 22: 2 2 x4 + x2 (x2 + 3) (x2 + 1) (1 + x2 ) (x3 + 4x) Z Z 4 Z Z 4x2 + 3x + 6 x dx dx x+1 24: dx 25: 23: 26: dx 2 2 2 x4 1 x3 1 (x4 + x2 + 1) (x2 + 2) (x2 + 3) Z Z Z Z dx x+4 dx (x 6) dx 29: 27: dx 28: 30: 2 3 + 3x`2 2 x (x2 + 4) x x2 2x (x + 1) (x + x + 1) Z 3 Z Z Z t2 + 2 dt x +x+1 dx 9 dx 31: dx 32: 33: 34: 2 3 x (x + 1) (x 1) (x + 2) (x + 3) 8x + 1 t (t2 + 1) Z Z Z Z 2x3 x x2 3 dx dx 35: dx 36: dx 37: 38: x4 x2 + 1 x3 + 4x2 + 5x + 2 x3 1 x3 + x2 + x Z Z Z Z 5x3 + 2 dx (x + 2) dx (20x 11) dx dt 42: 39: 40: 41: 3 3 2 2 2 x 5x + 4x (3x + 2) (x 4x + 5) x2 (x2 1) (t + 1) Z Z Z Z x3 8x2 1 dx (x 11) dx dx 5x 2 43: 44: 45: 46: dx x2 + 3x 4 (x + 3) (x 2) (x2 + 1) 2x3 + x x2 4 Z Z Z Z x2 dx dt dx 18 dx 48: 47: 49: 50: 2 2 3 2 4 2x + 9x + 12x + 4 16x 1 (t + 2) (t + 1) (4x2 + 9) 6 51: 55: 59: 63: 67: 71: 75: Z Z Z Z Z Z Z Z (17x 3) dx 3x2 + x 2 52: (t + 3) dt 4t4 + 4t3 + t2 56: 60: dt (t + a) (t + b) 64: 4x dx 16 Z 68: cos x dx sen x + sen3 x 72: (5x + 7) dx x2 + 4x + 4 Z Z Z 76: x4 + 1 dx Z 61: 2x3 + 5x2 + 16x dx x5 + 8x3 + 16x 65: x (3 Z ln x) x2 + 3x + 3 dx 3 x + x2 + x + 1 Z Z 62: 4 4 + 5x2 dx x3 + 4x Z e5x dx 58: x6 dx x2 16 Z Z 77: ex dx e4x 1 x2 Z 54: dx Z 73: 3x2 + 7x dx 3 x + 6x2 + 11x + 6 Z Z 69: dx x3 + 1 Z 57: 2x2 3x 36 dx (2x 1) (x2 + 9) dx ln x) (1 Z 53: 2x2 + 41x 91 dx (x 1) (x + 3) (x 4) Z (4x 2) dx x3 x2 2x 5x3 x4 x2 4x 4 dx x3 2x2 + 4x 8 66: t3 dt t3 8 70: t2 dt 4 t 8t 74: Z 2 (e2x + 1) t2 + 2 dt t (t2 1) Z x2 dx x2 + x 6 t3 1 dt 4t3 t Z x 3 dx x3 + x2 30x2 + 52x + 17 24x3 dx 9x4 6x3 11x2 + 4x + 4 Z x4 + 3x3 5x2 4x + 17 dx 2 x3 + x2 5x + 3 x (x2 + 1) Z Z Z 2 2x3 + 9x dx (3x 13) dx x 5x + 9 81: 82: 83: dx x2 + 3x 10 (x2 + 3) (x2 2x + 3) x2 5x + 6 Z Z Z 2 x2 8x + 7 5x2 11x + 5 x +x+2 84: 85: dx 86: dx 2 dx 3 2 + 5x 2 x 4x 2 x2 1 (x 3x 10) Z 4 Z Z 2x2 + x 8 2x 3 x 6x3 12x2 + 6 dx 89: dx 87: dx 88: 2 3 2 x 6x + 12x 8 x3 + 4x (x2 3x + 2) Z Z Z 2 6x2 + 22x 23 x + 2x 1 5x2 + 3x 2 90: dx 91: dx 92: dx 3 2 2 x + 2x (2x 1) (x + x 6) 27x3 1 Z Z Z 2 sec2 x + 1 sec2 x 2x2 x + 2 x 4x + 3 93: dx 94: dx 95: 2 dx x5 2x3 + x 1 + tan3 x x (x + 1) Z Z Z 6x2 2x 1 2x2 + 3x + 2 (x 2) dx 96: dx 97: dx 98: 3 3 2 4x x x + 4x + 6x + 4 2x2 + 7x + 3 Z Z Z dx 3x + 5 (2x + 21) dx 100: 99: 101: 2 dx 2 2 + 4x + 5) 2 (x 4x + 3) (x 2x2 + 9x 5 (x + 2x + 2) Z 2 Z Z x + 19x + 10 3x2 21x + 32 3x2 x + 1 102: dx 103: dx 104: dx 4 3 3 2 2x + 5x x 8x + 16x x3 x2 Z Z Z 2x4 2x + 1 2x2 + 13x + 18 2t2 + t 4 105: dx 106: dx 107: dt 5 4 3 2 2x x x + 6x + 9x t3 t2 2t Z Z Z x2 + x dx 5x2 3x + 18 x3 108: 109: dx 110: dx 3 2 3 4 x x +x 1 9x x x + 2x2 Z Z Z x2 + 3 x dx 2x2 x + 2 111: dx 112: 113: dx 3 2 3 2 x +x 2x x + 2x + x + 2 x5 + 2x3 + x 78: 79: x2 3x 7 dx (2x + 3) (x + 1) 80: Respuestas: Ejercicios 1:1: 1:5: 1:9: arcsen p 3 3 ln arcsen 1 4x p + C; 3x + p pb x a p 1:2: arcsen 3x2 2 + C; + C; 1:10: p 3 2 x + C; 1:6: 5 3 p 1 + t2 b b 1:3: ln 3=2 p ax + + C; p 14 14 p arctan p 14 7 t ax2 b + C; 1:11: 1 25 7 p + C; 1:4: 1:7: x 4x2 25 + C; 1 24 ln + p y2 + 4 1:12: p 2 + 9 + C; 3=2 3 3 + C; arctan 1:8: senpx 3 3 1 12 y3 (y2 +4)3=2 + C; + C; 1:13: 1 2 arctan x + 1:16: 9 2 arcsen 1:19: 1 4 1:22: p x2 x t+2 3 2 x 1:29: 3 e2t 1:41: arcsen 1:46: 1:50: p 2 2 p 1 243 p ln 1:59: 2 27 1:61: p 1 p 2 2 x 1:76: 1 2 ln x2 p p x2 x 4 p x4 x2 4x 3=2 + 2 1 2 1:90: ln tan x + p 2 4 135 x 1:92: 2 ln x + 1 + p arcsen arcsen p 1:104: 3 x2 t2 p x 2 t+1 p 2 t+1 p 2 p 1 1+ arcsen 1:85: 1 2 (x + 1) + C; p p 2 4 p 5 5 1:95: p t2 t 1 3 1 4 1:98: t2 + C; 2t 2+ p 1 4 arctan 1:101: x 1 2 1:108: p 2 1 4x + 5 + C; x2 x + C; 1:118: p 1:121: 2 t2 1 4 1:83: + C; 4x ln 1:89: 1:116: 1 z arcsen 5 3 q 1+ 8 t2 + C; 14 + C; arcsen p 3 3 1 4 1:45: x3 + C; arctan 1 x 1:49: x a 4 p 1 x 4 + C; x2 + C; + C; t2 t2 4 x2 x3 8 4 + C; 4x + 5 + C; p x2 + C; 9 p 2 35 25 4 5x p 35 7 x arctan p p 5 5 2 5 arctan + C; sen x + C; 8x + 19 + C; 1 x 6e + C; p p 2 x+1 7 7 arctan x+1 2 arctan arcsen (2t 1 2 + C; + C; 2t 1 4 1) + p ln t + 2 +8 p t2 + C; t t2 + 1 + C; 1 t+1 arccos p 1 + C; 1:106: x arctan + C; 1 3 1 6 1:103: arcsen 3 2 4y arcsen + C; p 10 10 (x + 3) + C; + C; 1 2 1:109: arctan t t 2t2 +2 + C; x2 + 2x + 5 + C; z2 z2 2x+1 3 2 + C; p 3 3 + C; 1 2 y 2 +4 3 ln x + 1 + 9 8 p ex +1 ex 1 1:96: 1:102: py 6x + 18 + ln sen2 x + sen x 2t + 26 + 2 ln t 1 8 arctan 6x + 10 + C; x2 (6 + x) + C; ln p 1 3 + x2 p 2 7 7 1:86: + C; x x2 + 9 + C; p 3 1 1 3 p p 1:99: 2 y 2 + 9 + ln y + y 2 + 9 + C; + C; 1:113: ln x2 x2 p 1:93: 12 t t2 + 1 + ln x2 1 12 x+x+2 p x2 + px + q + C; 1:111: 3 2x + x2 + 5 x2 p ln cos x + C; p 1:78: 3) + 3 ln x2 arctan ax ln a 1 2 x + C; + 5 3 + C; + C; 1:69: 4 3 t2 a2 arcsen x2 + 7 x2 5 + C; 1:72: 2 sen x x p arcsen 2+ x p 1 9x ln ln jx + 2j + C; 4x 3 5 arcsen p x2 + C; 2t + 26 + C; + C; 2 2 1 2 9 1 2 8 + C; x2 16 x2 2 3=2 1:66: 1:75: 1:80: ln jxj x 8 x2 x2 4x + 5 + 3 ln x x 3 p 1:58: x2 + 6x + C; 1) + C; ln 2x + p + 2 1:105: 6 arcsen (2x + 1) p 1 2 p p 4 arctan (6x p 1 32 + 1 3 1:40: x a2 2 3x 2 arccos 5 + C; 9x2 + 6x 4r 2 + C; 1 arcsen + C; 2x + x2 + 5 + C; 1) + ln x2 + 2x + 2 + C; x 2 11 11 p cos2 x + 4 cos x + 1 + C; 1 + C; p 1:88: x2 1 x 4 x x2 ln x + 4 + C; + C; 1:52: p 9 + C; p ln x + 3 + 1:91: x + 8 arctan (x x2 + C; 4x + 5 + 3 ln x 9 arcsen 2 2 4 4x + 5 + C; 3 arcsen ln t t2 t 9 + arctan ( x p 1:112: 2 x2 p + C; 2 + C; x2 arctan + C; x2 + 2x + 5 + 4 x 3 32 1215 x+1 4x+2x2 +4 ln x + p 81 8 16x2 p 1 p e2x 9 e2x e2t + C; 9 6x + 18 + 1:34: 1 5x 1:44: arccos 1:60: 2 x2 1 9x p 1:77: 2 x p 2 11 11 1:82: tan2 x p 5 16 + ln x2 1 2r q 9x2 1:25: ln x tan 2x 3 p p 2 p x2 + 4x + 5 + x + 2 + C; + C; + C; ln 3x + 1 + 1 128 1:55: ln cos x + 2 + 1 1 8x2 + 3 + C; 1) + C; arctan (x + 1) + ln t + 1:74: p 1 3 p p 2 729 3 5 arctan 10 5 x x2 + 2x + 5 + C; 1:63: 1:71: 1 6 1:37: e2x e2x 9 x p ln 1 t 2e + 1:21: 1:28: p 4 + C; arcsen (2r) + x2 + C; 1:65: arctan 1:48: 9x2 + C; 4 x2 + 6x + C; + C; p q x2 + C; 1 4 1:57: 1:68: 26x + 33 1 5x 1:87: p 3=2 p + C; ln x + 1 + + C; p x3 1:18: arcsen 1:31: p 3 10 4 1 729 ln x + 3 x x2 a2 x2 1 3a2 1:24: et 3 arcsen x2 + 2x + 5 + x + 1 + C; + C; 3 e2x 9 e2x p x2 +3 x 1:51: x+2 5 2 4 9x2 4 p x 1 8x 1:84: 1:120: + C; 9x2 4 ln x2 + 4x + 8 + C; 4 p p p p x2 + C; 5 arctan tan2 x + C; 1 2 1:43: p 4+ arcsen (2x 1:117: 3 3 1:54: 3 ln x + 3 + 1:81: 1:115: 1 81 x 72 p x 2 p x+2 ln 1:110: p 1 2x + C; 3 2x 1:33: q 1 2187 8 + C; 1:62: 1 p + 1 + 2 e4x + e2x + 1 + C; 2x x2 + 6x 1 4 1:107: 1 x2 x p 3 ln cos2 t 3 arctan tan2 x + C; t2 + 4 t 1:73: 1:100: 3 3 x 2 1:70: 9 2 + p arcsen + C; 3x 2 p 1:97: 3 x 4x ln x + 2 + 1:94: 1 x 1 2 1:39: 1:47: p 1 6 4 ln x + C; + C; + C; (x+2)3 x2 )3=2 (5 1:67: 1:79: 1 e2x +1 5 5 x 9 2 1:15: arctan (x + 1) + ln x + 2x + 2 + C; 1:30: 1:36: p p arcsen t2 + C; 2t 2 1:27: + C; p 1) ln 1 + 2ex + 2 1 + ex + e2x ln2 x 1 1:42: 9+x2 x ln 2e x 48 p + C; arcsen 3 1 2 x 3 x2 + ln 1:56: x x+6 6 1 1 1 3 p (e2x +1)3 arctan 1:53: 1:64: px arctan 1 q 3 p 2+ln p x 5 5 2 1:17: (t p x2 + C; 4x 1 2 1) + p 1:20: 3 x2 + 2x + 5 + C; 1:23: p arcsen (t t2 + C; 4t 3 arccos et + C; 9 1:38: 5 + C; 2 2 arcsen 6 6 p 1 2 1:14: 3=2 2 x3 2 p 1:35: 2 2 1:26: 2 arcsen p x2 + C; t+2 2 + 1 2 x arcsen 1:32: x 1 2 x2 +1 + + C; 1 4 (2x + 1) 1:119: p arcsen 2t + 26 + C; 1 27 1:114: 2 3 5 3 y 9 y2 + C; x2 + C; x t p + C; 2:1: x ln jxj + 2 ln jx 1j + C; x 2 x+1 2:2: 1 3 2:6: 3 2 2x 2:9: ln jx + 1j + 2:12: 2:15: ln 15 2 arctan (x 1 x + C; 1 x x+2 1 3 x2 +x+1 2 ln jx 2:33: 3 2 ln j2x + 1j 2:35: 1 2 ln x4 ln jxj 2:54: x x2 +4 ln ln x 2:70: 1 4t 2:72: 5 2 + 3 2 3 2 ln 3 x + C; x2 2:90: 2 ln jxj + 5 162 1 x p + + C; 2:88: 2 81 ln 9x + 3x + 1 2:97: 2 ln jx + 2j 3x+1 x2 1 3x3 p 2 3 3 3 3 x arctan 1 2 2x 3j ln jx ln j3x 3 3 1j + 1j + 1j + C; arctan x + ln jx 1j + C; p 5 3 27 (2 tan x 7 130 16 3 3 x 3 1 3 x+2 p 2 2 p 3 3 2:106: 2 ln jxj 2:109: 2 ln jxj 1 x2 +1 ln jxj + (x ln jx 2:95: 1 2 1 x 1 1 3 p 3 3 (2x + 1) + C; 4j + C; 2 x ln jxj + 3 2 (x 1)3 x+1 ln + C; ln 2x2 + 1 + C; ln j2x + 1j + C; 5 3 ln j3x 2j + C; 1) + C; 7 ln jx + 3j + 5 ln jx 1j 4j + C; 2 ln jx + 1j + C; 2x 1 2:63: 4 5 b ln jx 9 5 2j p 2 3 3 2 ln t + 2t + 4 t+a t+b ln a + C; ln jx + 3j + C; p 3 3 arctan (t + 1) + C; p 3 6 p 3 3 arctan (t + 1) + C; 1 2x 3 ln jx + 1j + 1 4 ln j2x + 3j + C; x x 3 2 + C; 2:86: x + 2 ln jx 2 ln jxj + 1 2 ln jx + 1j + C; 1j 1 2x arctan + C; 1j + C; x3 (x+1)2 1 4 2:107: 2 ln jtj + 8 x+1 3 4 + C; 2:99: 1j 2:96: ln jxj arctan (x + 1) + 1 x 2:104: ln jt + 1j + ln jt 2:110: 5 4 ln jx 2:101: 2 ln j2x + C; 4 ln jx + 3j + C; 9 1 18 ln x2 2:79: + C; 2 3j 1 2 2:66: x + 2:93: 2 ln jxj x + (2x 2:89: 2 ln x + 4 4j + ln jx + 3j + C; arctan ln jx 2:42: ln jxj 2 ln 161 6 + C; 2j + C; ln x + 4x + 5 + C; 3 ln jx 3 3 3 3 1j + 4 3x+6 p 1 4 2 ln jx + 1j + 3 ln jx + 3j + C; ln j2x + 1j + C; + C; ln jx 2:83: x + 3 ln 2j + C; + C; + C; p ln x2 + x + 1 + C; ln jt x 1 x+1 ln 2j + C; 1) + C; 2:103: 2 ln jxj + ln jx 1 x+3 2 3 1 4 (2x + 1) + C; ln t + 1 + C; ln t2 + 2t + 4 + (6x + 1) + C; ln jx + 3j arctan (x + 2) + x 4 x+4 1 3x 2 ln jtj + C; 1 3 3 + C; ln sen2 x + 1 + C; ln jx + 3j + ln j2x 2j 1 65 ln t arctan x + (2x + 1) + C; 1 2x2 +2 2 2:59: 2 3 2 1 12 1j + 3 ln jx 1) + C; 2:98: + C; 3 3 p arctan ln jx + 2j + 2:56: 4 ln jx + C; + 512 ln 2j 1 2 1 3 2:45: arctan 3 9 x+3 x ln 1 2 1 3t3 +5t 8 (t2 +1)2 2:76: 2 ln jx + 2j 88x 139 (x 2)2 arctan 3 3 p p arctan ln x + 1 + 1) + 1j 7 3 ln jxj p 1 ex 2 e2x +1 ln jt 2:78: 1 9 ln jx + 2j + 2:69: t + 2:81: 4 ln jx + 5j 2j + 1 2 3 6 + C; ln jx 1 6 p 2 1 2 2:51: 4 ln jx + 1j + 1 2 + C; arctan 4 9 ln jsen xj 1 6 2:73: 1 2x 1 12 + C; + C; 1) + 2:25: x 1j + C; 1 5 5x + (2x (2x 2:29: arctan t + 2:62: + C; 2:71: 2:91: 3 ln jx ln jxj + ln j2x + 5j + C; + ln j2x + p 7 2 4 24 ln jx arctan (x + 1) + C; 1 20 ln ln x ln x 2:85: 2 ln jx + C; p + C; 1j + C; 3 + C; + 3 ln jx + 2j + C; 2 ln jx 2 ln jx p arctan 151 19x 49(x+2)(x 5) ln ln x2 + 1 + C; ln j3x + 2j 3 2 x 2 x+2 ln j2t + 1j + C; ln x + 2x 1 1 2 2:68: 2 ln jtan x + 1j + 1 52 1 4 arctan (ex ) + 2:65: 256x + 2:75: 5 ln jx + 2j + 2 3 2x + 3 1 3x+2 + C; 9 16 1j ln jx + 1j + 3 x 5 x+2 2:61: ln x + 4 + C; 1 2 x 1 2x 1 4 3 3 + C; ln jx 11t+3 2t2 +t 11 ln jtj + 11 ln j2t + 1j 3 2 1 3 30 x 3 3j 2:21: 2:34: 2 ln jtj 2:48: 2 3x 3 3 p 2j + 2 ln jx + 3j + C; arctan p arctan 2:32: 4 + C; 307x+143 196x2 490x 294 arctan ln x2 + x + 1 + 1 6 ln jx + 1j 1 2 3j + 2 ln jt + 3j + C; + C; arctan 2:39: 5x + + C; 1 6 + 3 9 + 3 8 + 28 ln jx arctan x + C; 2:37: 2:41: 1 t+2 x 4x2 +9 3 6 (2x + 1) + C; + C; + p p 1) + C; ln jx 2:58: ex 1j + C; ln j2t 1 3 2:53: 2:55: arctan t+1 t+2 2:50: 2 7 16 1 2 2x 30 343 2:108: + 28x+17 1 3 (3x+2)(x 1) 2:84: 2:105: 2j + C; 2 ln j2x 4 + x x+1 ln x2 2:102: + C; arctan (ex ) + C; 1 2 5 1 2 x2 +4 2:82: 2:100: 2x 1 2x+1 ln ln jx arctan x + 2:80: 2x + 2:94: 1 8 3 3 x + 1 + C; ln j3x + 2j + C; 4x + 5 p (2x + 1) + C; ln + ln jtj 2:74: 4 ln arctan 2:47: ln x + 9 2:67: 3 3 2 x+1 2j + 3 ln jx + 2j + C; 2 2 2 1 2 ln x p 3 3 (4x arctan p 3 3 arctan arctan x ex 1 ex +1 2:64: 2:92: ln x2 ln jxj + 2 ln x + 4 + C; 2:60: 2:87: 3 3 2 3 2 2:77: p p 3 3 2 p 1 2 2x 2x+1 x 3 ln ln x2 + 4 + 1 2 ln jxj 2:44: ln x2 + 4 1 4 p 5 3 9 129 343 3x3 +6x2 +7x+15 2(x2 +2)(x2 +3) 2 2 x 2 ln jxj + 7 ln x2 3 2x2 2 1 + x2 +x+1 x2 x+1 ln 1 2 2x x+1 + arctan 1 4 + 2 arctan 2:27: ln x2 p 1j + C; arctan 2x + 2:57: 4 ln jx + 2j + 2:36: ln x + x + 1 2 ln jx 2:52: 2x + 1 + 2 1 2 + 2:31: x + ln jxj ln 4x 2:43: 3 ln jx + 4j 1 4 p 15 ln x + x + 1 + 2 3 4 2) + 2:46: 2 ln jx + p 2 3 3 ln x2 1 2 2:5: 3 ln jt 1j + C; 2:11: 6x + 2:16: 1 4 ln j2t 2:8: + C; + C; 1 2 1j + + C; 2:14: x x3 1 6 x4 +x2 +1 2 1 2 2j + C; 2:40: 4 arctan (x 2:49: 3 3 x x2 + 1 + C; 1 2 ln 2:23: p + C; x2 +3 x2 +1 ln x2 + x + 1 + C; 1 3 2:28: ln jx + 1j + 2:30: 3 ln jxj + C; 3 3 arctan 1j 1 2 2:20: 1 2x x2 x + 1 ln x2 + x + 1 1 4 2:18: p x2 +3 x2 +2 ln jx 1 2x x x ln jt x 1 x+1 ln 3x 17 2x2 8x+10 4x + 5 + + C; arctan 2:7: 2t+1 t2 +t t+1 t ln x2 1 2 2) + 1 16 + 2:4: 2 ln jtj + C; 2:10: 2 ln 2:13: 2 ln 2 arctan x 2:24: 3 ln 2:38: + C; 3 arctan 3x + C; x 8x2 +32 2 3 x x+2 ln 1j + 8 ln jx + 2j + C; 4x+3 2x2 +4x+2 5x 3 2x 3 2:19: x 2:26: 2:3: 3x + ln jx x2 2:17: 2:22: + C; 1 2 1j + 3 ln jx 1 x 4 2 x2 1 ln jx + 1j + 1 4 ln j2x x x2 +2x+2 1j + 2j + C; ln x2 + 2 + C; ln j2x + 1j + C; 1 2x2 +4x+4 ln jx + 5j + C; 1j + C; 3 4 + C; + C; 4 3 ln jx 1j 2:113: 2 ln jxj 1 2 2:111: 3 2 ln jxj + arctan x 7 6 ln jx + 2j + C; 2 ln x + 1 x 2x2 +2 2:112: 1 5 arctan x 2 5 ln jx + 2j + 1 5 ln x2 + 1 + C; + C; Bibliografía 1. Purcell, E. - Varberg, D: “Cálculo con Geometría Analítica". Novena Edición. Prentice Hall. 2. Stewart, J.: “Cálculo". Grupo Editorial Iberoamericano. Cálculo Diferencial e Integral - Integración u-sustitución. Prof. Farith Briceño e-mail : [email protected] Última actualizacón: Enero 2010 10